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SECTION 1

INTRODUCTION

This report describes progress made by our research group over the period
September 1983 to September 1986. Although we explored a range of issues in
connectionist learning, the major focus was the study of learning nonlinear associa-
tive mappings by layered networks. In earlier research we obtained some preliminary
results with an approach to this problem based on reinforcement learning [10,3,15|.
However, the specific reinforcement learning rules used in these studies did not pro-
duce rapid and reliable learning in all the learning tasks we tried. During the period
reported on here, we set out to obtain better understanding of this class of methods

through computer simulation and mathematical analysis.

The research direction that proved most fruitful was our effort to develop rigorous
ties between our reinforcement-learning adaptive units and the theory of stochastic
learning automata. Our initial aim was to develop a theoretically tractable learning
rule by developing one that specialized, under one set of restrictions, to a familiar
supervised-learning rule while also specializing, under another set of restrictions, to
one of the simplest of the stochastic learning automaton algorithms. The result is a
learning rule that we call the Associative Reward-Penalty. or Ag _p , learning rule. It
is very closely related to a relatively little-known learning rule presented by Widrow,
Gupta, and Maitra [58] that they called the “selective bootstrap adaptation” rule.
Thus, although it is novel. the Ag p rule is closely connected to existing theory, and
we were able to prove a convergence theorem for a single adaptive unit implementing
the Ag p rule {we call such a unit an Ag p unit) {7). What was rather surprising was
that the Agp_p unit turned out to perform very well as a network component. Lay-
ered networks of Ag p units solve nonlinear associative learning problems with great

reliability. This surprised us because in devising the Ap p unit we were concerned
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solely with the mathermatical tractability of a single unit and not with network perfor-

mance. However, it later became apparent that the learning capabilities that single
Agp_p units provably possess are crucial in obtaining reliable learning in networks.
Consequently, as a result of our attempts to shore up the mathematical foundations
of our work, we developed an adaptive unit that performed much better in networks

than any of the others we had tried.

During the period covered in this report, a number of other research groups be-
came interested in the problem of learning nonlinear associative mappings by layered
networks, or more generally, the problem of learning by “hidden units.” In addi-
tion to our own method using Agr-p units, two new methods were developed: the
Boltzmann learning procedure of Ackley, Hinton, and Sejnowski [1] and the error
back-propagation method of Rumelhart, Hinton, and Williams [44]. These meth-
ods attracted much public attention, especially the backpropagation method which
Sejnowski and Rosenberg [45] used in a system called NETtalk that learns how to
convert text to speech. Unlike Boltzmann learning, which applies to symmetrically
connected networks, the error back-propagation method applies to networks with-
out cycles (acyclic networks). Consequently, error back-propagation is more directly

comparable to the Ag_p method than is Boltzmann learning.

We invested much effort in performing simulations to compare various methods
for learning in layered networks, including the error back-propagaton method, and
the results are reported here. In the comparisons, we included methods that represent
several different approaches including the most brute-force search method possible.
We chose a learning task that was hard enough to make the brute-force search in-
efficient but not so hard that enormous amounts of CPU time were required. On
this task, the 6 input multiplexer task (see Section 4), the error back-propagation
method proved to be the fastest with a modified Ag _p method coming second and
the unmodified Ag_p method third. We did not systematically apply these meth-
ods to a series of increasingly difficult learning tasks in order to assess how they
“scale” to larger problems. Our experience and theoretical understanding suggest,

however, that the ordering of performance observed on the multiplexer task would

be preserved on more difficult tasks. The comparative simulations do establish that
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both the error back-propagation and the Agr_p methods are very much better than

a variety of more conventional search methods.

Although we have not extended the Ag_p convergence theorem, which applies to
a single adaptive unit, to a network of Ar_p units, much theoretical insight into the
behavior of Ag_p networks has been provided by a result proved by R. Williams (one
of the developers of the error back-propagation method). Williams [61,62] has shown
that under certain restrictions on the Ag_p rule, the ezpected change of any weight
within an arbitrary acyclic network of Ag_p units is proportional to the gradient of
the probability of reward for the entire network with respect to that weight. This re-
sult means that Agr-p networks do something similar to what error back-propagation
networks do, but they use estimates of the gradient which can be determined without

the need for explicit back-propagation.

Because a gradient is estimated by Ag_p networks, the following modified training
procedure is suggested. Instead of updating weights after a single presentation of an
input pattern and the generation of a single activity pattern, one can hold the input
pattern constant for several time steps and accumulate a gradient estimate during
the generation of several activity patterns. Updating the weights on the basis of this
improved gradient estimate should improve learning rate. We report the results of

simulations designed to test this hypothesis in Section 4.

Also reported here are results obtained from applications of layered-network
methods to two different tasks requiring the learning of problem-solving strategies.
The first task is the pole-balancing task that we have used in the past to demon-
strate reinforcement leaning under conditions of delayed reinforcement [13]. The
second task is to learn how to solve the Tower of Hanoi puzzle using a method that
is esentially the same as the method used in learning to balance the pole. Qur earlier
work with the pole-balancing problem assumed the existence of a representation for
the system’s state consisting of a large number of non-overlapping “boxes™ produced
by a pre-existing decoder. Given this representation, the task became one of filling in
look-up tables. This simplified representation allowed us to separate representation
issues from the issues of temporal credit-assignment. In the studies reported here,

the pre-existing decoder is replaced by a lavered adaptive network. This network
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receives as input a vector of four real numbers giving the state of the cart/pole sys-
tem. The network has to learn how to represent the state so that the system as a
whole can successfully avoid failure. The layered network provides a kind of adaptive
decoder. In order to accomplish this, the adaptive critic element and the associative
search element of previous studies were combined with the error back-propagation
method for learning in layered networks. The resulting system was able to learn
appropriate mappings for the control actions and the internal evaluation, and it was
demonstrated that the multilayer system dramatically outperformed a single layer

system.

Much the same approach was taken with the Tower of Hanoi puzzle. The state
of the puzzle was represented as a binary vector that acted as input to two layered
networks, one of which was responsible for forming an informative evaluation func-
tion, and the other of which was responsible for forming the correct mapping from
puzzle states to actions (moving the disks). This system consistently learned to solve
the puzzle using the minimum number of moves. This example allowed us to discuss
the relationship between our strategy learning methods and an adaptive production

system that has been applied to this puzzle {31].

In the concluding section of this report, I place our results in perspective by

discussing their relationship to more conventional engineering methods. 1 also discuss

directions in which I think it will be profitable to continue the development of these

methods.
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:: SECTION 2

0

' ‘ THE ASSOCIATIVE REWARD-PENALTY UNIT

"

W

:

‘ We developed a learning rule that we call the associative reward-penalty, or Ag_p ,

| rule {7,6,9,8]. This rule, which can be implemented by a neuron-like adaptive unit

: that we call an AR_p unit, is a refinement of similar learning rules that we had

X studied earlier. We devised it by combining aspects of algorithms for stochastic

A learning automata with aspects of algorithms for pattern classification or system

[ identification. As a result of this hybrid nature, this method differs in critical ways

b from the methods, such as the perceptron and Widrow/Hoff LMS methods, that have

' become widely used in connectionist systems (for details, see Ref. [6]). I first give an

‘ informal description of the Agr_p learning rule, after which I specify it more formally

and define the task it was devised to solve.

The Ag_p rule is an embellishment of Thorndike’s [52] “Law of Effect™:

&

. Of several responses made to the same situation, those which are ac-

e companied or closely followed by satisfaction to the animal will, other

- things being equal, be more firmly connected with the situation, so that,
when it recurs, they will be more likely to recur; those which are accom-
panied or closely followed by discomfort to the animal will, other things
being equal, have their connections with that situation weakened, so that,

3 when it recurs, they will be less likely to occur. The greater the satis-

. faction or discomfort, the greater the strengthening or weakening of the

bond. (p. 244)

b

N Although a literal interpretation of this “law” has numerous difficulties with respect

to animal learning data, it remains a principle whose basic features have considerable,

5
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but not uncontested, validity {33|. The Ar_p rule implements the basic idea of the
Law of Effect, but it was necessary to add a number of refinements in order to make

it work correctly.

Each situation referred to in the Law of Effect corresponds to an input vector,
or key, that is received as input by an Ag_p unit. From this input vector, the unit
determines an “activation level” which is the weighted sum of the components of the
input vector, where the weights make up the unit’s current weight vector. The unit
then determines its action by comparing its activation level with a randomly varying
threshold, “firing” (action = 1) when the activation exceeds the current threshold
value, and otherwise not firing (action = 0). The noise in the threshold is such that
when the activation is zero, the two actions are equiprobable; when it is positive,
firing is the more likely action; and when it is negative, not firing is the more likely
action. The activation level therefore determines the strength of the bond between
the situation and the actions. As the weights change so as to increase the magnitude
of the activation for specific input vectors, the bond between those vectors and the
various actions increases—positive activation producing a bond between the input
vector and firing; negative activation producing a bond between the vector and not
firing.

The Ag_p learning rule causes the weight vector to change in such a way that
if an action emitted in the presence of situation z yields an evaluation of “reward,”
the unit is more likely to produce the same action when z, or situations similar to
z, occur in the future; in the case of penalty, weights change in such a way that the
unit is more likely to produce the other action, when z, or situations similar to z,
occur in the future. In order for this process to converge correctly to the actions
that correspond to the highest probability of reward, it is necessary to change the
weights asymmetrically in the cases of reward and penalty. Changes in the case of
penalty must be much smaller than the corresponding changes would be in the case
of reward. In the following sections, more technical descriptions of these ideas are

presented.
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The Associative Reinforcement Learning Task

The Ag_p learning rule is designed to solve what we call associative reinforcement
learning tasks. In these tasks the learning system and its environment interact in
a closed loop. At each discrete time step, or trial, ¢, the environment provides
the learning system with a pattern vector, z(t}, selected from a finite set of vectors
X = {z,..., (™}, £ € R"; the learning system emits an action, y[t], chosen from
the finite set Y = {y;,...,y:}; the environment receives y[t] as input and sends to
the learning system a reward/penalty signal rt] € {reward, penalty} that evaluates
the action y[t|. The environment determines the evaluation according to a map
d: X xY — [0,1], where d(z,y) = Pr{r(t| = reward | z|t| = z,y[t] = y}. Ideally,
one wants the learning system eventually to respond to each input vector x € X with
action y, with probability 1, where y, is such that d(z,y.) = max,ey {d(z,v)}

As pointed out in Ref. {7], in the case of a single, nonzero input vector, this task
reduces to the task usually studied by learning automaton theorists (which, according
to the terminology used here, is a nonassociative reinforcement learning task); see
Section 2 and Ref. [36]. On the other hand, in the case of two actions (|Y| =
2) the task reduces to a conventional formulation of supervised learning pattern
classification (see [10]) if for each z € X, d(z,y1) + d(z,y.) = 1. This restriction
(assuming it is known to hold) implies that feedback received from performing one
action provides information about the other action. This makes the task much easier
and allows conventional supervised learning pattern-classification algorithms (slightly

modified) to succeed (see Ref. [7] for details).

The Agr_p Learning Rule

The Agr_p rule’s action selection method is parameterized at step t by a weight

vector w(t] € R™:

0, otherwise;
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where w(t|Tz[t] is the inner product of w(t] and z{t|, and the n|t] are independent

-~

identically distributed random variables, each having distribution function W.

According to Equation 2.1, the action probabilities at step ¢ are conditional on

the input vector in a manner determined by the parameter vector w(t]. In particular {
p”[t] = Pr{y(t] = 0|z[t] = z} = Pr{w(t|]Tz + n|t] < 0} = ¥(-w|t|Tz), (2.2) . $
and y
* A

pe(t] = Pr{y(t) = 1fzft] = =} = 1 - p*t]. (2.3)

If, for example, each random variable 7n[t| has zero mean, then when w|t|Tz = 0,
the probability that each action is emitted given input vector z is .5; when w(t|Tz
is positive, action y[t] = 1 is the more likely action; and when w(t]Tz is negative,
action y[t] = 0 is the more likely.! As |w|[t]Tz| increases for all z € X, the mapping .

Equation 2.1 approaches a deterministic linear discriminate function.

The parameter vector is updated according to the following equation: .
K
PR sl = p*IDzlt, el mrewardi
Mltl(1 = vle] - P [thalt],  if rle] =penalty;

where 0 < A < 1 and p[t] > 0.
In the case of reward, according to Equation 2.4, w changes so that the probability .
of the action chosen, conditional on the current input vector, moves toward 1 (if .
y[t] — 1 then w changes so that p!* approaches I; if y[t] = O then p'* decreases

toward 0, which means that the probability of producing action O increases). In the
case of penalty, on the other hand, w changes so that the probability of the action -
not chosen, conditional on the current input vector, moves toward 1. Note that the :
parameter A in Equation 2.4 determines the degee of asymmetry in the magnitude ’
of the weight change for these two cases. ‘ ‘
It is shown in (7] that the Ag_p rule reduces under various restrictions to more .\
conventional learning methods. It reduces to the two-action (nonassociative) lincar .'\:
e .

'This version of the Ap .  rule differs from that given in Refs. [7.8.61 in that the actions are 0 and
1 instead of —1 and 1. The weight-update rule given below is altered so that the two versions are

exactly equivalent. The 0/1 forin allows the notation to be a bit stmpler.
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reward-e-penalty (Lg_.p) learning automaton rule (36| when each [t} in Equation 2.1

is uniform in the interval [—1, 1), the input pattern is constant and nonzero over time

‘ot

steps (z|t] = £ # 0), and the initial parameter vector w[l] is such that w([1|Tz €
[-1,1]. If additionally A = 0, then the Ar_p rule reduces to the linear reward-inaction

(Lg-1) rule [36]. On the other hand, when the Ag_p rule is made deterministic by

[t~

letting n{t] = O for all ¢ (i.e., the distribution function V¥ is the step function), then

the Ag_p rule becomes the perceptron learning rule [42]. With a slight modification,

'l

-
-

the Ar_p rule can be reduced to the pattern-classification method introduced by

> v
-

Widrow and Hoff [59] (the adaline, or LMS, algorithm). Consequently, the Ag_p rule
not only extends learning automata capabilities but also occupies the intersection of
¢ important classes of learning algorithms. Section 2 provides some background on
\ learning automaton methods. The Ag_p rule is most closely related to the “selective
bootstrap adaptation” method of Widrow, Gupta, and Maitra (58], to which it is
compared in {7].

A convergence theorem is proven by Barto and Anandan (7| by extending to
the associative case results proven by Lakshmivarahan (28,27|. It holds under the
following conditions: (C1) the set of input vectors X = {z(!),. .. 2™}, () ¢ R,
(C2) for each z € X and t > 1, Pr{zt] = £} > 0; (C3) the independent, identically

Pl d

distributed random variables n[t} in Equation 2.1 have a continuous and strictly
monotonic distribution function ¥; and (C4) the sequence p[t] in Equation 2.4 is

such that p[t| > 0, 3, p[t] = oo, ¥, p[t]* < co. We can prove the following theorem:

Theorem. Under conditions (C1)-(C4), for each A € (0,1|, there exists a w € R"
, such that the random process {w(t|}.>, generated by the Ag_p rule in an asso-
ciative reinforcement learning task converges to w} with probability 1 (that is,

Pr{lim; ., w|t| -~ w3} = 1), where for all z € X,

- Priy = llw3,z} > 1/2, if d(z.1) > d(z,0);

< 1/2, if d(z,1) < d(z,0).

<

In addition, for all r ¢ X,

e ey,

1, ifd(z,1) ~d(z,0);

lim Pr{y = lw},z} = {
A e0 A } 0, ifd(x.l) “ d(.‘l’,O).

z
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According to the usual performance criteria for learning automata [36], this result
implies that for each = € X, the Ag_p rule is e-optimal. In fact, it implies a strong
form of e-optimality for each z € X. It is highly unlikely that this result is the most

general that can be proved about this class of learning rules (see [7]).

As is often done when using similar pattern-classification methods, in most of
our simulations we hold p[t] constant in order to increase learning speed even though
a weaker form of convergence in this case has not yet been proven. We have not
yet investigated elaborations of the Ag_p rule that reduce to recursive least squares
methods based on the Newton’s algorithm, but these have the possibility for showing
improved convergence rates. We view condition (C1) that the set of input vectors is
linearly independent as the most serious restriction required for the present theorem.
It is likely that this restriction can be removed and a result proved that involves

some form of operator pseudoinverse.

Simulation of a Single Agr_p Unit

In order to illustrate the performance of the Agr_p learning rule, we describe
the results of simulating a single Ag_p unit in a simple associative reinforcement
learning task that requires discrimination between two linearly independent, but
non-orthogonal, input vectors. We use as a measure of performance the probability
that the unit will receive reward on the average time step given its current parameter

vector. We denote this M(t] when computed based on the parameter vector w]t}:

M|t] = Z;E,[Pr{r[t] = 1jzt] = z}|
> &ld(z 1)p" 1] + d(r.0)p™ 1],

where £, is the probability that input pattern r occurs on any trial. This measure is
maximized when the optimal action for each input pattern occurs with probability

1, in which case it is

e B el e

A1max - X f,max{d(x, l),d(T,O)}

re X
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The distribution function of the random variables used in all the simulations de-
scribed here is the logistic distribution given by ¥(s) = 1/(1 + e */T), where T is
a parameter. This is a sigmoidal function that is similar to a normal distribution
function but is easier to evaluate. It is also used in the studies of statistical coopera-
tivity (e.g., Ref. [24,1]), where T is the “computi.ional temperature” of the system.
As T approaches zero, the distribution function approaches a step function, which
means that the Ag_p unit more closely approximates a deterministic system. Given
this distribution function, the probability p'*[t] in Equation 2.4 is as follows (from

Equations 2.2 and 2.3):
pr[t] = 1-p%t
= 1-¥(-w(t|Tz)

= 1-[1/1+ e'”('IT’/T]

1

¥ (w(t)Tz).

In all simulations presented here, we set T = .5.

In the first simulation the input vectors are: z(!) = (1,0)T and z(® = (1,1)T,
which are linearly independent but not orthogonal. These vectors are equally likely
to occur on each trial (&, = £, = .5). The weight vector, w, is zero at the start
of each sequence of trials, which makes the actions initially equiprobable for both
input vectors. The reward probabilities implemented by the unit’s environment are

given by the following table:

z d(z,0) d(z,1)
D 6 9
@ 4 2

Thus it is optimal for the learning system to respond to (0, 1)T with action 1 to obtain
reward with probability .9, and to respond to (1,1)T with action 0 to obtain reward
with probability .4. Therefore, in this task M, ., - (.9 + .4)/2 — .65, and the initial
overall reward probability is (.6 +.9+ .4+ .2)/4 = .525. Note that any nonassociative
learning automaton algorithm will be able to achieve a reward probability of at most

(.94 .2)/2 -~ .55 by learning to perform the action 1 at all times. Also note that

11




for each input z, the reward probabilities are either both greater than .5 or both

less than .5, making this task considerably more difficult than one with the reward

probabilities placed above and below .5 for each z.

Figure 1a shows results of simulating an Ag_p unit in this task with three different
values of A: .01, .05, and .25. We held the parameter p|t| at the value .5 for all
t. Plotted for each trial t is the average of M(t| over 100 runs, where a run is a
sequence of 5000 trials. The dashed lines show theoretical asymptotic performance
levels for the three values of A (if p[t] were decreasing according to (C4)). Note
that this asymptote approaches the optimal performance level .65 as A decreases
and that the learning rate decreases as A decreases. The average final parameter
vectors for A = .01, .05, and .25 are respectively (2.99, -4.04)T, (2.73, -3.08)T, and
(1.91,-1.71)T. Figure 1b shows a plot of M|t| for one of the runs contributing
to the average shown in Fig. la for A = .05. Although this task involves only
two-diinensional pattern vectors, it illustrates the essential difficulties of learning to
discriminate between patterns that are similar by virtue of sharing a subset of feature

values.

Ag_p Units and Stochastic Learning Automata

The theory of learning automata originated with the independent work of the So-
viet cybernetician Tsetlin [55], mathematical psychologists studying learning [16,19],
and statisticians studying sequential decision problems (e.g., the “n-armed bandit
problem” [41]). Although this theory has an extensive modern literature in engi-
neering (reviewed in [36]), there has been very little cross-fertilization between this
theory and neural-network research. In this subsection I briefly describe this the-
ory, contrast it with the theory of supervised pattern classification, and describe
how learning rules like the Ag _p rule can be seen as a synthesis of aspects of these

theories.

Figure 2 shows a learning automaton interacting with an environment. At each
step in the processing cycle, the automaton randomly picks an action from a set

of possible actions, Y {y;,...,y}. according to a vector of action probabilities,

12
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Figure 1: Simulation Results for a Single Ag p Unit
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Figure 2: Stochastic Learning Automaton Interacting with a Random Environ-
ment.

P - {p(y1).--..p(ye)}}. The environment then evaluates that action by selecting an

evaluation signal that it transmits back to the automaton. Figure 2 shows the case

03

in which the evaluation, r, is either “success™ or “{.ilure” and is selected according
to probabilities {d,,...,d,}. where d, = prob{success|y,} (other formulations allow
a countable number or a bounded continuum of evaluations). Upon receiving the
evaluation, the automaton updates its action probabilities as a function of its current
action probabilities, the action chosen. and the environment's evaluation of that
action. Beginning with no knowledge of the environmental success probabilities, the
objective of the automaton is to improve its expectation of success over time. Ideally,
it should eventually choose action y; with probability 1. where d;  max{d,.....d,}.
Many different algorithms have been studied under a number of different performance

measures, and many convergence results have been proven [36;,

Theorists have become increasingly interested in the collective behavior of learn-

ing automata. Figure 3 shows collections of N learning antomata interacting with an

environment. In Fig. 3a. each automaton receives a different evaluation signal that
depends, in general. on the actions of all N automata. This models the situation
in which the automata have differing. and possibly confhieting. interests. This is a

game decision problem. In contrast to the problems studied in classical game theory,
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Figure 3: (a) The game problem. (b) The team problem.

the automata operate in total ignorance of the payoff structure of the game and the
presence of the other automata. In the case of zero-sum games (games of pure con-
flict), theoretical results show that when employing certain algorithms, the learning
automata converge to the game’s solution (if that solution involves pure strategies;

see Refs. [29,30,56)).

Figure 3b shows a collection of learning automata in the team situation, which is
the special case of the game situation in which the automata receive the same evalua-
tion signal. In this case, the automata have a common goal but each automaton only
has partial control over the evaluation. As in the case of games, the learning process
in this case is incompletely understood, but a number of mathematical results have
been proven, the strongest of which shows that certain stochastic learning automaton

algorithms lead to monotonic increases in performance [37].

Comparing stochastic learning automata and the typical adaptive units used in
theoretical neural-network research reveals several important differences. First, a
tvpical neuron-like adaptive unit has multiple input pathways that carry patterned
stimulus information. Such a unit might also have a pathway specialized for training,
such as the pathway for the desired response of a Widrow;Hoff Adaline or a Per-
ceptron unit. The learning process causes the unit to implement or approximate a
desired mapping from stimulus patterns to responses. A learning automaton, on the
other hand, only has a single input pathway for the evaluation signal. Learning ei-
ther results in the selection of a single optimal action or a suitable action probability
vector  no (nontrivial) mapping is produced. On this dimension of comparison, then,
the usual adaptive units are doing something more sophisticated than are learning

antomata.

|
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However, the usual adaptive unit requires an environment that directly provides
either a desired response or a signed error that directly tells the unit what response
it should have produced. In contrast, a learning automaton has to discover, in a
stochastic environment, which action is best by sequentially producing actions and
observing the results. Since there are no constraints on the success probabilities,
information gained from performing one action provides no information about the
consequences of the other actions. This can be a non-trivial problem even in the case
of two possible actions and is fundamentally different from the supervised learning
problem [18]. Therefore, in terms of the amount of information required for successful
learning, a stochastic learning automaton implements a form of learning that is more

powerful than the supervised learning performed by most neuron-like adaptive units.

Because typical network adaptive units and learning automata excel on different
dimensions, it has been fruitful to study learning units that combine the capabilities
of these two types of systems. The resulting units, such as Ag_p units, are able to
learn mappings in the absence of explicit instructional information. This ability has
implications for applications to learning control problems as discussed in Section 5.
Units such as Ag_p units can also participate in team or game decision problems sim-
ilar to those in which learning automata have been studied. Unlike nonassociative
learning automata, however, these units can learn to act conditionally on information
from a variety of sources, including other units in a collection. Consequently, collec-
tive behavior more complex than that produced by nonassociative learning automata
can be procuced by networks of units combining associative learning with reinforce-
ment learning. The following quotation illustrates that Tsetlin [55] was similarly

interested in more elaborate forms of collective behavior:

We have discussed very simple forms of behavior, and for this reason
we limited ourselves to the simplest types of automata. The exchange
of information among these automata takes place in the language of
penalties and rewards. Although this language seems universal enough,
it would, however, be interesting to also look at more complicated au-
tomata that possess some specialized language to communicate to other

automata. Such automata are needed to describe more complex forms
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of behavior. These more complex behavioral forms necessitate the use of

much more diverse information. (p. 125)

To the best of my knowledge, there has been no systematic attempt to study the

collective behavior of learning automata that communicate in this way.? Some of

our research represents the beginning of this type of study as described in the next

section.

“Recent work by Thathachar and Sastry |51! uses stochastic learning automata in an algorithm
for supervised pattern classification.  Although this algorithm combines pattern classihcation and

learning automata in a very interesting manuer, it does not involve mutually communicating learning

- antomata,
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COOPERATIVE BEHAVIOR OF Ag_p UNITS t

SECTION 3

In this section, I present an overview of our studies of cooperating collections of
Agr-p units. Since details of the simulations are provided elsewhere [6], I mainly dis-
cuss the significance of these results and their relationship to other lines of research:
the collective behavior of stochastic learning automata, game and team decision the-
ory, and other methods for learning in layered networks. In Section 7, I briefly discuss
problems with scaling this approach to larger problems and suggest how they might

be solved by means of modularity and local reinforcement.

Associative Search Networks and Team Decision Problems

Our early work with the networks we called associative search networks, or ASNs,
stressed the ability of these networks to learn associative mappings in the absence
of explicit instructional information [14,11]. Figure 4 shows an ASN. It differs from
the usual single-layer associative memory networks discussed in the connectionist
literature (e.g., Ref. [23]) because instead of having reference channels for specify-
ing desired outputs of the units, it has a single channel for broadcasting a scalar
evaluation signal to all of the network’s units. We studied ASNs in associative re-
inforcement learning tasks [14,12,11]. The object of such a task is to construct the {

mapping that associates each key with the action (recollection) that yields the best

possible evaluation from the environment. A basic assumption is that the network
has no a priori knowledge about the environment’s evaluation function. If a network
can solve this task, then the associative mapping it constructs has exactly the same

properties as the mappings learned by the usual associative memory networks. In this
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Figure 4: Associative search network.

case, however, the mapping would be formed in the absence of explicit instructional
information. The scalar evaluation signal contains much less information than the
reference vector required for storing information in the conventional case—it can be
generated by an environment that can evaluate the behavior of the network, that is,
the collective behavior of the network’s units, but cannot specify the desired behavior

of each individual component.

In addition to relating ASNs to associative memory networks, one can relate them
to the teams of stochastic learning automata mentioned in Subsection 2 and shown
in Fig. 3. An ASN in an associative reinforcement learning task is a generalization
of a set of learning automata in a team decision problem. If one were to hold the
input pattern to the ASN fixed for all time, the result would be the same as a team
of nonassociative learning automata facing a team decision problem. Since all units
receive the same reinforcement, they have no conflicts of interest. Consequently,
the ability of an ASN to search for optimal patterns can be seen to arise from the
cooperative activity of the adaptive units as ecach attempts to maximize its own
performance. The ability of the adaptive units of an ASN to do this conditionally on
information provided by the input patterns implies that the units cooperate to form

associative mappings.
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Layered Teams of Ag_p Units

A natural extension to the single-layer ASN is to add additional layers of
Ag-p units. In these networks, units learn to act conditionally on information pro-
vided by other units in the network as well as information provided by the network’s
environment. As a result, layered networks can learn to implement nonlinear asso-
ciative mappings. Suppose the network’s environment presents stimulus patterns to
the network by making the patterns’ components available as input to some subset
of the network’s units. We call the units that receive this external stimulation the
input units. The output signals of another subset of units are received by the envi-
ronment, and patterns of these signals constitute the “overt” actions of the network.
These are the output units, or to use the term of Hinton and Sejnowski (24|, “visible

units.” The units that are not output units (including any input units that are not

output units) we call the “hidden units” after Hinton and Sejnowski [24]. ! Suppose

that the environment evaluates the activity of the visible units and broadcasts a

reinforcement signal to all the units of the network.

How can a hidden unit improve its reward probability when its output cannot
directly affect the environment? The only possibility is for it to assist visible units
in increasing their reward probabilities; and this might be possible only by assisting
intermediate units. For example, a hidden unit might adjust its weights in order
to produce a signal A that another hidden unit combines with other information to
produce a signal B, where signal B, in turn, allows a visible unit to make a required
discrimination. The adaptive units must be able to discover how they can contribute
to the common goal. We regard the linking up of units under these conditions to be

a form of cooperation by which units coordinate their activities for mutual benefit.

'Note that our use of these terms differs slightly from their usage hy Hinton and Sejnowski and
others. They replace each of our network input pathways with a specialized unit whose activation can
be clamped to specific valies by the network’s environment, and they call these units visible units

ton. I have always preferred not to do this given my background in switching and automata theory.




A Minimal Layered Network of Ag_p Units

Figure 5 shows a network of two Agr_p units, v, and us. Only u, receives stim-
ulus patterns from the environment, and only the action of u; is available to the

i: environment (u, is hidden; u; is visible). Suppose this network faces an associa-

-
a

“ufw b

Figure 5: A Minimal Layered Network of Ag_p Units

tive reinforcement learning problem in which the network’s output, the output of
us, affects the reward probability in a manner that depends on the stimulus pattern
presented to u;. Both units receive the same reinforcement signal. If there were no
means for u, to communicate with u,, the units would be capable of achieving only
y limited reward frequencies. The action of u; influences the reinforcement of both
units, but in the absence of a communication link, u, remains blind to the discrimi-
native stimulus and therefore cannot learn to respond selectively in a discrimination
task. On the other hand, in the absence of a communication link, u; can sense the
discriminative stimulus but cannot influence the reinforcement received. The com-
plementary specialties of the two units have to be combined in order for each to
attain optimal performance. In simulating this situation, we arranged for the action
of uy to potentially influence u, by providing an interconnecting pathway with an
. initial weight of zero. If this weight can be adjusted properly, the network can re-
spond correctly. However, the correct value of the interconnecting weight depends

on how u; has learned to respond to its input. Conversely, the correct behavior of u,

" depends on the value of the interconnecting weight, that is, on how u; has learned

to respond o its input signals. Thus the two units must adapt simultaneously in a
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tightly-coupled cooperative fashion in order to maximize reward frequency.

To be more specific, we set up the simulation in the following way. Each unit is
provided with a constant input (equal to 1) to allow its threshold to vary and one
other input pathway. We regard only this second stimulus component as the stimulus
pattern z, treating the constant input as part of a unit’s internal mechanism. Each
unit of the network in Fig. 5 can therefore receive the input “pattern” 0 or 1, where
for u, it is generated by the network’s environment, and for u, it is the output of
u;. The reward probabilities implemented by the network’s environment are given

by the following table:

Table entry d(z,y) is the network reward probability given that u, receives r as
input and u, responds with y as output. that is, given that the network as a whole
responds to z with y. Thus it is optimal for the network to respond to = ~ 0 with
action 0 to obtain reward with probability .9, and to respond to £ = 1 with action 1
to obtain reward with probablity .9. In this task M.« = (.9 + .9)/2 = .9, and the
initial overall reward probability (with all weights zero) is (.9 + .1 +.1 + .9)/4 = 5.
Note that if the network fails to discriminate by responding identically to all input

patterns, the overall reward probability is (.9 + .1)/2 .5.

There are two ways the network can solve this problem. Let us denote the weights
associated with u;’s (nonconstant) input pathway w'. ¢ 1,2. In the first solution,
u, learns to fire only when stimulus z - 1 is present by setting its threshold high
(i.e.. setting its threshold weight negative) and setting w! positive. Unit u, does
the same thing- sets its threshold high and #? positive so that it it fires only when
stimulated by u’s firing. Consequently, the network as a whole fires only when r 1.
In the second solution. uy learns to fire at all times ercept when stimulus r 1 is
present, and u, learns to fire at all times ereept when vy fires. Then when uy is silent

in response to r 1, u, is disinhibited and so fires.

In simulating a trial with this network. and with all the networks to be described,

the environment first presents a stimulus pattern to the network, and then proceed-
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ing from the input side of the net\l;/ork, we sequentially compute the output of the
successive units so that their actions are available as input to “downstream” units.
This is possible because the networks described here do not have recurrent con-
nections. When the network’s overt action is generated, the environment produces
the reinforcement signal, and all the units update their weights. We view the weight
modifications as occurring simultaneously for all units, although this is actually done

sequentially by the computer program.

Figure 6 shows the behavior of the network for a typical sequence of 500 trials
with A = .04 and p = 1.5. Figure 6a shows the evolution of the behavior of u, in
terms of two graphs. The first shows the conditional probability that u, fires (y; = 1)
given that its (nonconstant) input is 0, and the second shows the same thing for input
1. Both of these probabilities start at .5 since the weights are initially zero, and they
change in approximately the same way for about the first 50 trials. This means
that during these trials the unit is experimenting with firing and not firing in the
presence of both input signals. At this point the two conditional probabilities show
the beginning of differentiation between the two cases, which becomes unequivocal by
about trial 80. From then on, with a few brief exceptions, u, has a high probability
of firing in response to an input of 1 and a low probability of firing in response to
an input of 0. Figure 6b shows the evolution of the mapping implemented by u,
and u; acting together by showing the probability that u, fires (yo = 1) for the
different values of the network input z (not for the values of u;’s local input). Since
the network learns to respond correctly, u, learns to remain silent unless excited by
u,’'s activity; that is, the first solution is formed in which both w, and w, become
positive and both units set high thresholds. Figure 6c shows the evolution of the
overall performance measure M,. Figure 6d is a histogram of the number of trials
required to reach a criterion of 98% of M,,., for each of 100 sequences of trials. In
all sequences the network reached this criterion before 1500 trials. In 45% of the
sequences, the network produced the first solution; in the remainder it produced the

second.

A series of two units in a discrimination task provides one of the simplest examples

we could devise to demonstrate statistical cooperativity of self-interested units. [t is

.............




RN N RPUE I I S RIS M

Priyi=tr =0} 0S5 h ] -zt e e e

200 300 00 500
300 300 100 500

TRIAL NUNBER

100 200 300 100 500

1.0t T
Muue
[/ R I it Al b A I IS I S S I I I 1
. 0. ]
* REWARD
: PROBABILITY 0.
) 0. 1
0. ................................................................
0.4, . . . . ]
[} 0 100 200 300 400 500
TRIAL NUMBER
5 1of o 7
|
NuUMBER OF ‘ J'] :
M TRAINING ‘\t ” E} ‘
SEQUINCES t j'[’m il E”
, i
o il Hiindldl o ho ol ‘
d 0 Tn00 €60 T %00 OVER 000 .
TRIALS UNTIL SOLUTION {MEAN=320)
1 Figure 6: Simulation Results for the Two-unit Network.
X 24

e T T R Y LT e e %t N e A e 4 e Y o S NN R WM e EL o w man L wa s awo w . e ae, .
P N AN I S T T S A AT ALY > I PR, PNl AL A P A A UL St S At AR
Sl SR Lh.p@hhmﬁu»ﬁu,uhlma.mhﬁghhh Sl L Gl Sl A S N LGRS L RIS OREERSRNY |




clear that the Ay p units effectively form a link that permits them to obtain higher
reward rates than they could attain if they were to act independently. Moreover,
a unit contributes to the formation of this link only because doing so furthers its

interests. We interpret this as a form of cooperativity in the literal game-theoretic

sense. One may regard the link as a “binding agreement” by which the units form
a coalition for mutual benefit. We have simulated series of 3, 4, and 5 units with
appropriate connections being made in all cases, although learning slows considerably
as the depth of the network increases. Although the discrimination required in
these tasks is not difficult, the necessity to construct a long chain of connections
that faithfully transmits the discriminative stimulus is quite difficult. The correct
behavior for any unit depends on the behavior implemented by all the other units so

that the solution cannot be constructed from stable solutions to subtasks.

The XOR Task

In the task just described, cooperative learning is required only because the net-
work lacks a direct pathway from input to output. The task itself is easily within
the capabilities of a single unit. Here we illustrate the simplest example of a task
that cannot be solved by a single linear threshold unit, or any single-layer network of
them. In this problem the hidden unit is needed not just to transmit a discriminative
stimulus to the visible unit; the hidden unit must learn to respond to particular con-
figurations of its stimulus components in order to create a signal that the visible unit
needs to behave properly. In our simulation, a network of two Ag_p units is placed
in a task requiring it to form the two-component exclusive-or mapping. The network
has a single hidden unit, u,, and a single visible unit, u,, which are connected as
shown in Fig. 7. The stimulus patterns are all the two-component binary vectors:
' (0,0), 2™ (0,1), 2 (1,0), 2 (1.1). These patterns are equally likely

to occur on any trial. Fach unit also has a constant input and a threshold weight.
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The reward probabilities are given by the following table:

z . d(z,0) d(z,1)
.1

9

.1 9
1 9
9 1

Table entry d(z,y) is the reward probability given that the network receives r as
input and responds with action y. The optimal reward probability is M., = .9,
which is obtained when the action of the visible unit is the exclusive-or of the pattern
components, that is, when u, fires when one or the other, but not both, stimulus
components are present. It must also not fire when both components are absent. A
single Ag_p unit can be correct for at most three of the four cases, yielding a reward
probability of .7, since weights do not exist that allow a single linear threshold unit
to respond correctly to all four stimuli (see Duda and Hart, 1973, or Minsky and
Papert, 1969). However, the performance of the network of Fig. 7 can approach
M...x if the hidden unit learns to respond only to the fo-'rth case and the visible unit
takes advantage of this signal to “debug” its responding. This can happen in several

ways depending on whether the hidden unit learns to turn on or off for the fourth

case.

Xy

Figure 7: Network for the Exclusive-Or Task.
Figure 8 shows performance of the two-unit network for a typical sequence of 5000
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trials with p = 1.5 and A = .08. In Fig. 8a are graphs showing how the output proba-
bilities of the visible unit develop for each input pattern; Fig. 8b shows the analogous
information for the hidden unit; and Fig. 8c shows the overall performance of the
network as a function of the trial number. The visible unit quickly learns to respond
correctly to all patterns except z{!) = (0,1) (Fig. 8a), causing the network perfor-
mance to level off near .7 (Fig. 8c). Eventually (¢ ~ 1400) the hidden unit comes to
respond reliably to z{!) and to reliably not respond to any other pattern (Fig. 8b).
At the same time, the visible unit begins to be excited by the hidden unit’s signal
so that its output tends to be correct more frequently for all four patterns (Fig. 8a).
Once this mutually beneficial relationship between u, and u, begins, it quickly devel-
ops until almost perfect performance is achieved (the theoretical asymptote is .892

for this value of A). It is clear that this is a cooperative process.

Figure 9 shows a histogram of the number of trials until a criterion of 95% of
M nax 1s attained for each of 100 sequences of trials. The average number of trials
until criterion is 3501, or about 875 trials for each stimulus pattern. In all of the

sequences the network reached this criterion before 15,000 trials.

The Multiplexer Task

The network shown in Fig. 10 has six input pathways and a single principal output
pathway (from unit 5). There are 39 weights to adjust: one associated with each
of the pathway intersections and one threshold weight for each unit. The reward
contingencies implemented by the network’s environment force the network to learn
to realize a multiplexer circuit in order to obtain optimal performance. A multiplexer
is a device with k address input pathways and 2* data input pathways (here k  2),
each of which is associated with a distinct k-bit address. Given a pattern over the
address pathways, i.e., an address, a multiplexer’s output is equal to whatever signal
(0 or 1) appears on the data pathway associated with that address. It therefore
routes signals from different input pathways to a single output pathway depending
on the “context™ provided by the pattern over the address pathways. If we call the

address components a; and a; and the data components d,.d;,ds, and d4. a minimal
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logical expression for the maltiplexer function is

dyayd) V dyazdy V a1dzds VvV aja;y dy.

There are a total of 2¢, or 64, input patterns.

For each of the 64 possible input patterns, we rewarded each unit of the network
with probability 1 if the visible unit (unit 5) produced the correct output, and we
penalized each unit with probability 1 otherwise. The input patterns were chosen
randomly for presentation to the net. All of the units implement the Ag_p algorithm
with T = .5 except for the visible unit (unit 5) which uses T = 0 (and therefore
essentially uses the perceptron algorithm; see Section 2). Fig. 11 is a histogram
of the number of trials required for the network to respond 99% correctly for 1000
consecutive trials in each of 30 sequences of trials with p = 1 and A - .0l. The
average number of trials required is 133,149, or about 2080 presentations of cach
stimulus pattern. In every sequence the network reached the criterion before 350,000

trials.

NUNSLN OF
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Figure 11: Histogram of Trials to Criterion for the Multiplexer Task.

This task illustrates some of the computational sophistication that can arise with
the formation of nonlinear functions. Linear threshold functions can exhibit only a
very restricted form of context sensitivity: contextual information can bias activation
one way or the other, effectively raising or lowering a threshold. Nonlinear context
sensitivity, on the other hand, can result in the complete alteration of behavior as

a function of contextual information. The exlusive-or task described in Section 3
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! illustrates this in the simplest form, where one stimulus component can be regarded
) as switching the processing of the second stimulus component between the identity
and inversion functions. The multiplexer illustrates a more extreme form by which
the contextual information provided over the address pathways completely alters the

set of signals to which the principal unit is sensitive.

R LA

- Discussion— Ag_p Networks and Gradient Descent

| Not long after we began experimenting with networks of Ag p units, Rumelhart,
) Hinton, and Williams [44] presented an error back-propagation method for learning
‘ in layered networks that has since become well-knowr This method is described
in Section 4, where its performance is compared with that of several other methods
including the Ag_p method. This error back-propagation method is now deservedly
. popular since it is simple to understand and outperforms other methods for learning

in layered networks, including ours based on Ag_p units. What is most interesting

. here is that the error back-propagation method together with a theoretical result of
Williams (61,62| sheds much light on the collective behavior of Ag_p units in layered

networks. In fact, it is not too misleading to regard Ag _p networks as performing a

s s A s

kind of stochastic approximation to the back-propagation method (although this is

.

not strictly true for several reasons to be discussed).

The error back-propagation method is a gradient descent procedure in weight
space. The remarkable result is that information about how to step in weight
X space to minimize (or maximize) a global network performance criterion can be
obtained locally in the networks. In the case of the back-propagation algorithm,
this information the partial derivative of the performance criterion with respect
to each weight - is obtained through a complex process in which error signals are
- transformed and passed backward through the network. Another way for a unit to
determine what steps to take in weight space is for it to determine the derivative
of the performance criterion with respect to its activity by varying its output and
observing how the global performance changes as a result. Given this estimate, the

unit can then correctly determine how to change its weights.
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More specifically, suppose the units are deterministic, and that a given hidden
unit can vary its output around its current value while the outputs of all of the
other units are frozen at their current values. By observing the consequences of this
variation on the performance criterion, the unit can determine the gradient of the
criterion with respect to its output at the current point in weight space. From this
it can easily determine the criterion’s derivative with respect to its weights, and so
can alter them appropriately. Now each unit in turn can do this with the other units
frozen. If a unit’s new weights are not put into place until all the units have varied
their outputs, the result will be a step in weight space according to the gradient of the
criterion. This process, which is reminiscent of, but different from, the Boltzmann
relaxation process, would work but has obvious shortcomings since some outside

agency would have to orchestrate the process and it would be quite slow.

But can the units vary their outputs simultaneously and observe the consequences
to achieve the same result? This could be made to work if the units independently
influenced the criterion function, but it is difficult to see how it could be done if these
influences are not independent, which is the only case of real interest. It turns out,
however, that it is possible for interacting units to simultaneously vary their outputs
to obtain an estimate of the appropriate gradient. This is essentially what happens
in networks of Ag.p units. Williams has shown [61] for an arbitrary acyclic network
of Ag p units that if the parameter A in Equation 2.4 is zero for each unit?, then
the expected direction of each weight change is proportional to the gradient of the
global network reward probability. Consequently. each weight changes according to
an unbiased estimate of the partial derivative ol the global criterion function with
respect to that weight. On any particular trial, the step in weight space actually
taken may or may not amount to an improvement, but the trend will always be in

the correct direction.

Thus, Ag p networks (with A 0) provide a way of locally computing gradient
information without the need for a complex back-propagation process. We have

found that in practice such networks actually require A to be nonzero (in fact, a

“We call units with X 0, Ap ;1 units, for Aszocintive Heward-Inachion units: upon penalty, no

weight changes ocenr.
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positive value much smaller than p) in order to converge properly. Although the

average direction of weight change is correct when A = 0, the process can get stuck
at suboptimal points in weight space because the units become deterministic too
soon. Setting A nonzero seems to prevent this from happening by eliminating all
absorbing states from the stochastic process. Consequently, even after learning is
complete, all the units retain a small amount (depending on the size of A) of random

variability in their behavior.

This view of Agr_p networks provides a link, albeit an approximate one, to the
gradient descent procedure implemented by the Rumelhart et al. back-propagation
method. The link is not exact for two reasons: 1) since Agr_p units are binary
whereas back-propagation units have continuous outputs, the activity spaces in the
two cases are different, and 2) the criterion functions in the two cases are different-—in
the Ag_p case it is the network reward probability whereas in the back-propagation
case it is the total mean-square-error of the visible unit’s activity. Nevertheless, the
relationship between these two methods is useful in understanding the cooperative
interaction that occurs in Ag_p networks. As one would expect from this relationship,
the Ar_p method is slower than is the back-propagation method in terms of the
number of stimulus pattern presentations. This is borne out in the comparative
studies described in the next section. However, the Ag_p method does not require a
back-propagation process to assign credit to the units. This could have advantages
in terms of hardware implementation and in terms of biological plausibility. The
relationship of the Agr_p method to gradient descent also suggests a modification of
the Ag_p learning scheme, which we call the batched Ag_p method, that is described

in Section 4.
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SECTION 4

COMPAKATIVE STUDIES OF LAYERED NETWORK LEARNING METHODS

A
4
In assessing any new approach to an old problem, it is necessary to compare
the new method with ones that have been tried before. We therefore conducted :
simulation studies designed to compare a number of methods that have been proposed
for learning in layered networks. We compared eleven such methods by applying each k'
to the same learning task. We chose the multiplexer task (see Section 3) because it . l
is difficult enough to show the advantages of the more sophisticated methods, but it )
is simple enough that reasonable amounts of CPU time are required for statistically )
significant comparisons. In this section | review the results obtained. Complete -
details are available in Ref. [4] from which this section is abstracted.
In the experiments to be described, the hidden-unit learning rule is the primary N
variable. The learning rule for the output unit is the same for most experiments.
The perceptron learning rule [42] is used for the output unit since it is well-known .
and is relatively insensitive to the learning rate parameter p (so p would not have to
be varied to optimize performance).! The network structure is as in Fig. 10. A step E'
in the simulation of this system consists of the following. An input vector is selected :_
by choosing one randomly, without replacement, from the set of all input vectors. -
Upon receipt of an input vector, the outputs of the hidden units are calculated, Y,
followed by the calculation of the output of the output unit. The output of the .
output unit is subtracted from the desired output. This error controls the perceptron 5
learning rule as it is applied to the weights of the output unit, after which the .
particular learning method being tested in the hidden units is applied to the hidden .
"
'The application of the error back-propagation method 44| to the hidden units requires the use of ‘
a differentiable output function in the output unit, so a semilinear output function and learning rule ’
were used in the ontput unit for the experiments with the error back-propagation method. N
~
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units’ weights (although some methods, such as the direct-search methods, do not
change the weights of the hidden units on every step). This completes one step in
the simulation. Every input vector is presented once during the first 64 steps, and
once again for every subsequent set of 64 steps, where the order of presentation is

determined randomly.

The direct-search methods are presented first. These methods require no knowl-
edge about the network other than the number of hidden-unit weights and their
ranges of values. Following the direct-search methods, several error back-propagation
methods are presented that involve the propagation of the output unit’s error to the
hidden units. Several reinforcement-learning methods are then presented, including
the Ar_p method. A modification of one reinforcement-learning rule is considered
that generates localized reinforcements to the hidden units by propagating informa-
tion from the output unit back to the hidden units. Finally, a mechanism is consid-
ered that treats hidden units that have not yet acquired a substantial influence on

the output unit differently from those that have developed influence.

The behavior of each method depends on several parameters. A comparative
study should guarantee that parameter values are used that are optimal for a given
method to ensure the absence of bias in favor of one method over another. However,
the time required to simulate the learning process in these experiments prohibited a
thorough optimization of the parameter values. We were able to test an average of six
different values over a broad range for each parameter, and when a method depends
on more than one parameter, only one parameter was varied at a time. Note that
this attempt to compare methods, where each is operating with optimal parameter
values, does not address the important issue of the relative degree of robustness of
the methods. Since the parameter values that are optimal depend on the learning
task, it is possible that a learning method may excel at a particular task when using
specific parameter values and yet perform badly on another task when using those
same parameter values. On the other hand. a method that learns more slowly than
other methods on a specific task may have a speed advantage over the other methods
when applied, with the same parameter settings, to a class of tasks. The comparative

studies reported here do not address this important issue.
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Another important issue that is not addressed by these studies is the issue of
scale-up. How do learning times grow as tasks get larger or more difficult? We did
not apply the battery of learning methods to a series of increasingly difficult learning

tasks.

Direct-Search Methods

Unguided Random Search

The simplest possible brute-force random search was included to provide some
idea of how difficult the test learning task is. This method consists of randomly
choosing new weight values for all of the hidden units in the network (using uniform
probability density function); evaluating these weights by allowing the network to
interact with its environment for a number of steps (denoted n); and remembering
after each evaluation period the weight values receiving the best evaluation so far.
Here we want to evaluate the current values of the weights by measuring how well the
network can solve the task using the given weight values. The output unit continues
to learn while the weights of the hidden units are held constant. The weights of the
output unit are set to zero whenever new values for the hidden units’ weights are

generated.

The unguided random search was tested on the multiplexer task for several values
of n. For each value of n, the results from 10 runs of 300,000 steps were collected.
The final performance level of a run, v, is the number of input vectors for which
the network is incorrect when using the best set of weights found on that run (so
0 -. v -~ 64 and a purely random strategy of generating outputs would result in an

average value of 32).

In addition to the performance level at the final step of each run, we determined
the value of a measure of cumulative performance, g, which for a single run is the sum
of the number of errors made on every step. For a nonlearning, random strategy.

errors would occur on an average of half of the steps, producing a value for p of

150,000.
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The results of the experiments are listed in Table 1, including the 99% confidence
intervals of v and x. The unguided random search performed better than a nonlearn-
ing, random strategy for all values of n that were tried. The value of i consistently
declines as the parameter n increases. Recall that after every n steps, a new weight
vector is generated that does not depend on previously-tested vectors, so there is no
gradual improvement in performance as a run progresses. However, since the output
unit is learning throughout each n step period, larger values of n result in better
performance at the end of the n step period and better average performance over

that period, which explains the inverse relationship of u and n.

Table 1: Unguided Random Search on the Multiplexer Task

n v I
50 256+ 278 140,228 + 263
100 22.7 + 2.88 134,397+ 128
200 23.4+3.80 127,913+ 237
400 18.0+ 3.21 122,209+ 176
800 16.5+2.66 117,809+ 342
1600 15.7+3.22 115,099+ 324
3200 18.41+5.23 112,848+ 462
6400 17.0+4.29 112,577+ 803
12800 169+ 3.96 111,477+ 1,064
25600 17.7+3.71 110,654+ 1,535

The values of v do not show that any one value of n is optimal. When n is 200
or less, significantly higher values of v are obtained than when n is 400 or greater.
In fact, for n < 200, performance is not significantly different from that of a single

layer, for which v =~ 24.

A learning curve for the unguided random search on the multiplexer task was
obtained by choosing the best value of n. which is 1600, and performing 30 runs of
300,000 steps each. This resulted in performance measures of v - 17.0 { 2.93 and
i 115,062 + 229 and the learning curve in Fig. 14 (the upper-most curve). On
this and all subsequent graphs, an initial rapid drop appears from 0.5 errors per step
to approximately 0.37 or 0.38. This is caused by the output unit learning as many

correct responses as possible without using hidden units; a single unit given the input
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vectors for the multiplexer task can learn the correct output for 40 of the 64 input

vectors, resulting in an average of 0.375 errors per step.

Guided Random Secarch

There are obviously many ways of improving the unguided random search, all of
which involve generating weight vectors that depend on the currently-best vector (or
on a series of best vectors). We studied two methods: a guided random search and
the polytope method described below. The guided random search differs from the
unguided random search only in the manner of generating new weight vectors. Rather
than being chosen according to a uniform probability density function, weight vectors
are chosen from a unimodal probability density function (defined below) centered on
the weght vector that is currently the best. This density function is symmetric
about the currently-best vector, and the probability of selecting vectors decreases as
the Euclidean distance from the currently-best vector increases. We used a density
function based on the logistic distribution (see Ref. [4] for details). The method
depends on two parameters: the number of steps between the generation of weight

vectors, n, and the spread of the density function, 7.

As stated earlier, the amount of computer time required to perform these exper-
iments prevented a systematic search for the optimal values of n and r. However,
we did perform two unidimensior il searches by holding 7 2 while varying n, then
varying 7 while holding n at the value resulting in the best performance. For each
parameter setting, results were averaged over 10 runs with each run lasting 300,000
steps. The results in Table 2 show that intermediate values of n are required to
achieve good performance. However, unlike the results for the unguided random
scarch, the cumulative performance measure, u, also has a U-shape as n increases,
providing evidence of a tradeoff between learning in the output unit (large n) and
optimizing the weights of the hidden units by making more trials (small n).

Performance as a function of 7 also has a U-shape there appears to be an optimal
value of 7 in the range of 0.5 to 2 (as the value of r increases, the probability density
function approaches a uniform density function, and the behavior of guided random

search approaches that of the unguided random search. The learning curve in Fig. 14
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Table 2: Guided Random Search on the Multiplexer Task

KRR A SRS P L L L

n v " T v n
50 27.2+3.76 138,978+ 898 0.1 189+491 106,894 % 6,204
100 24.1+3.61 131,957+ 2,102 0.2 17.1+253 109,454+ 4,897
200 18.4+394 124,089+ 1,345 0.5 149+4.13 105,34316,124
* 400 13.8+3.76 115,390+ 3,271 1.0 11.4+358 102,583+6,128
800 13.31+4.73 111,205+ 3,851 20 12.5+394 106,818+ 2,524
1600 13.1+4.21 106,544 13,314 40 1564283 108,128+ 2,797
3200 12.5+43.94 106,818 + 2,524 8.0 15.0+4.06 108,498+ 3,066

6400 16.5 +4.48 108,225+ 2,413
12800 17.6+5.29 108,620+ 3,615

T=2 n = 3200

was produced by averaging 30 runs of 300,000 steps each, using n = 3200 and 7 = 1.
The resulting performance levels are v = 13.1 + 2.36 and x = 103,866 + 3420.

The Polytope Algorithm

Another method for directly searching the weight space is the Polytope Algorithm
[21]. This method is often called the “simplex” method, not to be confused with the
simplex method for linear programming. The polytope algorithm is a deterministic
hillclimbing method that maintains a list of m weight vectors, ordered according
to their evaluations. The m weight vectors are treated as vertices of a polytope in
m - 1 -dimensional space, and new vectors are generated in a fashion designed to shift

the polytope towards an optimum weight vector, taking large steps when progress

is being made in improving the evaluation and taking smaller steps when it appears
that the optimum has been approached. Since this is a deterministic hillclimbing
method, it can get stuck at a local optimum, but it is good at following ravines. We
included it in our study as an example of a reasonably sophisticated, deterministic,

direct-search algorithm to complement the random methods presented above.
The polytope algorithm depends on the parameter m, the number of weight
vectors maintained as vertices of the polytope. and the parameter n, the number

of steps over which each weight vector is evaluated. Other parameters are p,, p,,
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and p., which determine the lengths of reflection, expansion, and contraction steps,
respectively. Valid ranges for these parameters are p, > 0, p. > 1, and 0 ~ p. < 1.
To reduce the number of experiments to a practical level, we did not attempt to find
optimal values for p,, p., and p., but set them to reasonable values. We did vary m
and n, as shown in Table 3. The value of m was fixed at 20 while n varied, after
which n was fixed at 1600, which gave the best value of v, while m was varied. The

results are again averages over 10 runs at 300,000 steps per run.

Table 3 suggests that the optimum value of n is between 400 and 3,200. The
results are even less conclusive about the optimum value of m; additional runs must
be made to obtain performance averages with less variance. The values n = 1600
and m = 10 were used in 30 runs of 300,000 steps to obtain the learning curve in

Fig. 14, resulting in v = 14.2 + 2.09 and ¢ = 94,977 + 3079.

Table 3: Polytope Algorithm on the Multiplexer Task

n v u m v ©
7200 20.844.04 118,780 6,537 3 17.412.78 100,046 + 6,767
400 17.8 + 4.33 105,624 + 4,442 5 17.6+4.51 96,223+ 4, 441
800 13.0+ 3.82 99,575+ 5,310 10 1214 1.97 94,157 + 4, 165
1,600 12.6 + 2.70 102,449 + 3,654 15 1594 6.15 102,793 + 4,071
3,200 14.2 + 2.76 109,711 £ 1, 460 20 12.6 £ 2.70 102,449 + 3, 654
6,400 15.7 4 3.74 110,860 + 2,058 25 14.7+4.24 107,972+ 2,447

12,800 19.0+ 3.93 110,866 + 2,488

m = 20 n — 1600

None of the direct-search methods were able to solve the multiplexer task within
the allotted 300,000 steps. The unguided random search showed no improvement
over time because the weight vectors being tested were not dependent on previous
search steps. Its fina. performance level is slightly better than that of the single-layer
system (v - 17 versus v 24). The guided random search does show improvement
over time, though its learning curve becomes approximately flat early in the runs.
Averaged over the last 3,000 steps of every run, the number of errors per step is
approximately 0.35. The polytope algorithin performs better than both random

search methods, reaching an average over the last 3,000 steps of 0.28 errors per step.
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Error Back-Propagation Methods

Next we discuss some error back-propagation methods for learning in hidden

units, starting with a method studied by Rosenblatt [42].

Rosenblatt’s Back-Propagation Method

Rosenblatt is known for his work with the perceptron-family of learning rule,
but his error back-propagation method has received little attention. Since this was
proposed early in the history of research on learning in multilayer systems and seemed
to work reasonably well for the experiments Rosenblatt performed, we wished to
include it in our study. Rosenblatt’s back-propagation method is a nondeterministic
way to assign errors to hidden units based on the errors of output units. The following

is our specification of Rosenblatt’s back-propagation method:

1. Initialize all weights to zero.

2. Receive input vector, calculate the output of all units using a linear threshold

function, and receive error signals for the output units.
3. Apply the perceptron learning rule to the output units.

4. Calculate the error, é,;, passed back from output unit k to hidden unit ;
(probabilistically based on the output unit’s error, the weight connecting unit

7 to unit k, and the output of unit j).

vi|t] random variable from a uniform probability density
function over [0, 1], where k « O takes the values of the
indices of the output units,

I, if y,ft] = Vand (d,[t] -y [t])weltl - Oand vt] - py;

vE, il y(t) o O0and (dft] oy, lt) wyelt] - 0and velt] - py

byxlt] or
if y;[t] = 0 and (d,[t] - y,lt]) wlt] - 0 and veft] < pa;

0. otherwise,

AR AR B

Pk A g8 o
A A4 )

AR AR

AR RAINAS)

“‘v l." |_' . ." “‘ ‘.- .

R
.-

ANV

.‘. .



5. Apply the perceptron learning rule to each hidden unit 7, using the sign of the

sum of the back-propagated errors from the output units as the error signals:

Awg,[t] == psgn (Z 61k[t]) ,[t].

kecO

6. Repeat, starting at Step 2, until the prespecified number of time steps has

elapsed.

Rosenblatt’s back-propagation method depends on the parameter p, a factor de-
termining the magnitude of change for each weight, and the parameters p,, p,, and
p3, which are probabilities affecting the frequencies with which the back-propagated
error signals take the values +1 and —-1. Rosenblatt performed a number of ex-
periments and determined that the values p; = 0.9, p, = 0.3, and p; = 0.1 were
reasonable values. Rather than attempting to optimize all four parameters, we used
these values for p;, p;, and p3 for all experiments, only varying the value of p.

The results are in Table 4. There are few significant differences for different
values of p, although values from 0.125 to 0.5 resulted in slightly lower values of
v. The values of v and u show no improvement over a single-layer system. Indeed,
the learning curve for Rosenblatt’s method in Figs. 14 and 4 shows no improvement
over time and is always worse than the single-layer level. The learring curve is
averaged over 30 runs of 300,000 steps each. giving values of v -~ 23.9 + .58 and u
121,115 + 92. To judge the performance of Rosenblatt’s back-propagation method

fairly, additional values of p,, p;, and p; must be tested.

Rumelhart, Hinton. and Williams

Another approach to the back-propagation of errors was taken by Rumelhart,
Hinton, and Williams [44,. Our specialization of this method to the two-layer multi-

plexer network 1s as follows:

1. Randomly initialize all weights to be in the interval | 0.1,0.1].
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Table 4: Rosenblatt’s Back-Propagation Method on the Multiplexer Task

r v R - S

0.030 24.7+ 3.54 121,085+ 238

0.060 23.6+ 2.96 121,286+ 168

0.125 22.8+3.11 121,112 4 156

0.250 22.0+ 292 121,129+ 176

0.500 21.9+2.83 121,175+ 278

1.000 24.0+2.74 121,161 + 169

2.000 23.1+3.18 121,132+ 134

0.5F i
|
L" ROSENBLATT
0.4¢ 1
AvERaGE  0.37 7
fRRORS L ]
PER
TIME STEP 0.2} 1
0.1} RUNELHART - STEN 7
/ RUMELHART
0 %= T : ]
0 100,000 200.000 300.000
TIME STEPS

Figure 12: Learning Curves for Iirror Back-propagation Methods
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2. Receive input vector, calculate output of all units, and receive error signals for

the output units. All units use the semilinear output function:

1

- ;}w-‘flt]-’ff[tl

y;lt] =
1 +e
3. Calculate é, for each output unit k € O:
Oc(t] = (dic[t] — wielt]) wlt] (1 - welt])
where d}, is a modified version of the desired output, defined as

" t] = 09, If dk’t] = ];
e = 0.1, if dift] — 0.

4. Apply the learning rule to the weights of each output unit k:
Awji[t] = p bk[t] z5(t] + pm Awje|t - 1],

where z,{t| is an input component received by output unit k. Recall that the
output units receive the original input terms to the system plus the output of

the hidden units.

5. Calculate é; for each hidden unit j:

6;(t] = (Z 5k[3]w1k[t]) yilt] (1 —y;(t)).

keO

6. Apply the learning rule to the weights of each hidden unit j:

Awg,[t] = p §;[t] Zi[t] + pm Awy |t - 1],

7. Repeat, starting with Step 2, until the prespecified number of time steps have

elapsed.
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By adding a fraction of the previous Aw to the current weight change, (Steps 4
and 6), it is hoped that the weight values will be more likely to follow the slope of
the error function at the bottom of steep valleys, by canceling opposing steps up
one side or the other. Rumelhart et al. consider this additional term as affecting the
“momentum” of the trajectory of weight values. The method has two parameters:
the rate of change parameter p and the factor p,, that controls the magnitude of the
momentum ter n. Table 5 shows the values of p and p,, that were tested and the

results averaged over 10 runs of 100,000 steps each.

Note the modification of the desired output value in Step 3. Rather than values
of 1 and 0, values of 0.9 and 0.1 are used. Without this modification, weight values
can grow in magnitude to the point where truncation errors due to the particular
computer implementation can cause weight values to become frozen—the value of

y(1 — y) in the weight update equation becomes equal to zero.

Table 5: Rumelhart et al. Error Back-propagation Method on the Multiplexer

Task
S <
0.05 35188 1 3 1.8 + 0.84
.10 317161 1602 11.7 t 3.30
0.25 14144 + 1426 0.3 + 0.55
0.50 6066 1 1052 0.3 4 0.39
1.00 4944 + 1224 0.7 £0.39
2.00 3289 + 935 0.2 £ 052
4.00 3294 1 836 0.2 + 0.52
8.00 13446 + 4097 6.6 +2.93
16.00 32422 + 5497 183 + 3.12
Py =0
P v 7 N v o
0.05 349764 496 189 +1.97  0.05 6130 + 349 0.1 % 0.26
0.10 33218 t+ 1671 15.9 t 4.57 0.10 3207 + 454 0.01 0.00
0.25 26245 t 7354 9.3+ 7.79 0.25 1747 4 480 0.0 £+ 0.00
0.50 11287 t 2562 0.1 £0.26 0.50 1492 1 844 0.2 £ 0.52
1.00 3836 t 8G9 0.2 1052 [.00 58024 2686 1.9+ 1.86

2.00 3267 + 1229 1.0 + 0.86
4.00 8905 + 2213 3.5+ 1.55
' 0.5

P - 0.9
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The output value of a semilinear unit is a real value between 0 and 1. To compare
with the other methods that use binary-valued, linear threshold units as the output
unit, the output of the output unit k was set to 1 if y > 0.5 and was otherwise set to
0 while calculating x4 and v and the learning curve. This is only done in measuring

performance, not in actually running the learning method.

From Table 5 one can see that this error back-propagation method reliably solved
the multiplexer task within 100,000 steps, for p = 0.1 and 0.25 and p,, = 0.9. For
= 0.25 only 1,747 errors were accumulated over 100,000 steps (u = 1,747). Best
performance (considering both v and u) resulted when p = 0.25 and p,, = 0.9.
These parameter values were used to generate the learning curve shown in Fig. 4
and in Fig. 1